Техногенные опасности. Техногенные опасности и риски презентация, доклад Шумская Анна Эдуардовна

ЭЛЕКТРОБЕЗОПАСНОСТЬ

Слайд 2

Электробезопасность Учебные вопросы: 1. Основные понятия 2. Действие электрического тока на организм человека 3.Факторы, определяющие опасность поражения электрическим током 4. Условия поражения электрическим током 5. Основные причины поражения электрическим током Шаговое напряжение 6. Технические способы и средства защиты 7.Средства защиты, используемые в электроустановках

Слайд 3

Литература: Бурый А.З. Безопасность жизнедеятельности. Учебное пособие СПб ГК, 1997, ч. I. Русак О.Н. и др. Безопасность жизнедеятельности. Учебное пособие. Лань. 2000, Раздел II, §7.4. 3. Белов А.В. и др. Безопасность жизнедеятельности. Учебник для Вузов. Высшая школа. 1999, Раздел 1, §3.2.5, Раздел 2, §§5.5-5.6 4. Хван Т.А., Хван П.А. Безопасность жизнедеятельности. Учебное пособие. Ростов на Дону. 2000, Тема №1, §1.3.8.

Слайд 4

Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Слайд 5

Организационные мероприятия включают: обучение безопасным методам проведения работ контроль знаний и соблюдение техники безопасности при выполнении работ медицинский контроль

Слайд 6

защита от случайного прикосновения к токоведущим частям понижение напряжения на металлических нетоковедущих частях электроустановок при его случайном появлении из-за нарушения изоляции или другим причинам Технические способы и средства защиты, применяемые для обеспечения электробезопасности:

Слайд 7

Электрическим током называется упорядоченное движение электрических зарядов. Упорядоченное движение свободных электрических зарядов, происходящее в проводнике, называется током проводимости. Токами проводимости являются: электрический ток в металлах, созданный упорядоченным движением свободных электронов, ток в электролитах, осуществляемый упорядоченным движением ионов, ток в газах, где упорядоченно движутся ионы и электроны.

Слайд 8

Сила тока - количество электричества, проходящее через поперечное сечение проводника за бесконечно малый промежуток времени, т.е: I=dq / dt где: I - сила тока, А, dq - количество электричества, проходящее через поперечное сечение проводника, dt – бесконечно малый промежуток времени. Если за любые равные промежутки времени через поперечное сечение проводника проходят одинаковые заряды, ток называют постоянным (по величине и по направлению) и обозначают буквой I. За единицу тока в системе СИ принят ампер (А). Переменным называется такой ток, сила или направление которого (или то и другое) изменяются во времени.

Слайд 9

Ток, проходящий через тело человека (I h, А), условно определяют по закону Ома: I h = U пр. / R h., где: I h – ток, проходящий через тело человека, U пр - напряжение прикосновения, R h - сопротивление тела человека. Электрической дугой называют длительный самостоятельный электрический разряд в газах, поддерживающийся за счет термоэлектронной эмиссии с отрицательно заряженного электрода – катода. Поражение электрическим током организма человека носит название электротравмы.

10

Слайд 10

Действие электрического тока на организм человека Действие электрического тока на организм человека носит многообразный характер. Проходя через организм человека, электрический ток вызывает: термическое, электролитическое, биологическое действия. Термическое действие тока проявляется в ожогах отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства.

11

Слайд 11

Электролитическое действие тока проявляется в разложении крови и других органических жидкостей организма и вызывает значительные нарушения их физико-химического состава. Биологическое действие тока проявляется как раздражение и возбуждение живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, в том числе легких и сердца. Это многообразие действий электрического тока может привести к двум видам поражения: электрическим травмам, электрическим ударам. .

12

Слайд 12

Электрические травмы представляют собой четко выраженные местные повреждения тканей организма, вызванные воздействием электрического тока или электрической дуги. э лектротравмы электрические ожоги электрические знаки электроофтальмия металлизация кожи механические повреждения

13

Слайд 13

Электрический ожог – самая распространенная электротравма. Ожоги бывают двух видов: токовый (или контактный) и дуговой. Токовый ожог обусловлен прохождением тока через тело человека в результате контакта с токоведущей частью и является следствием преобразования электрической энергии в тепловую. Различают четыре степени ожогов: I - покраснение кожи; II - образование пузырей; III - омертвение всей толщи кожи; IY - обугливание тканей. Тяжесть поражения организма обуславливается не степенью ожога, а площадью обожженной поверхности тела. Токовые ожоги возникают при напряжениях не выше 1-2кВ и являются в большинстве случаев ожогами I и II степени; иногда бывают и тяжелые ожоги.

14

Слайд 14

Дуговой ожог. При более высоких напряжениях между токоведущей частью и телом человека образуется электрическая дуга (температура дуги выше 3500 ◦ С), которая и причиняет дуговой ожог. Дуговые ожоги, как правило, тяжелые – III или IY степени. Электрические знаки – четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергшейся действию тока. Знаки бывают в виде царапин, ран, порезов или ушибов, бородавок, кровоизлияний в кожу и мозолей. В большинстве случаев электрические знаки безболезненны и лечение их заканчивается благополучно.

15

Слайд 15

Металлизация кожи – это проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги. Это может происходить при коротких замыканиях, отключеньях рубильников под нагрузкой и т.п. Металлизация сопровождается ожогом кожи, вызываемым нагревшимся металлом. Электроофтальмия – поражение глаз, вызванное интенсивным излучением электрической дуги, спектр которой содержит вредные для глаз ультрафиолетовые и инфракрасные лучи. Кроме того, возможно попадание в глаза брызг расплавленного металла. Защита от элетроофтальмии достигается ношением очков, которые не пропускают ультрафиолетовых лучей и обеспечивают защиту глаз от брызг расплавленного металла.

16

Слайд 16

Электрический удар – это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся непроизвольными сокращениями мышц. В зависимости от исхода воздействия тока на организм электрические удары условно делят на следующие четыре степени: I – судорожное сокращение мышц без потери сознания; II –судорожное сокращение мышц, потеря сознания, сохранение дыхания и работы сердца; III – потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе); IY– клиническая смерть, т.е. отсутствие дыхания и кровообращения.

17

Слайд 17

Электрический шок – тяжелая своеобразная нервно-рефлекторная реакция организма на сильное раздражение электрическим током, сопровождающаяся глубокими расстройствами кровообращения, дыхания, обмена веществ и т.п. Шоковое состояние длится от нескольких десятков минут до суток. После этого может наступить полное выздоровление как результат своевременного врачебного вмешательства или гибель организма из-за полного угасания жизненно важных функций.

18

Слайд 18

Факторы, определяющие опасность поражения электрическим током электрическое сопротивления тела человека условия внешней среды и другие факторов уровень приложенного к человеку напряжения род и частота электрического тока пути тока через тело человека п родолжительность воздействия электрического тока

19

Слайд 19

Электрическое сопротивление тела человека Тело человека является проводником электрического тока, неоднородным по электрическому сопротивлению. Наибольшее сопротивление электрическому току оказывает кожа, поэтому сопротивление тела человека определяется главным образом сопротивлением кожи. Роговой слой в сухом незагрязненном состоянии можно рассматривать как диэлектрик: его объемное удельное сопротивление достигает 10 5 – 10 6 Ом·м, что в тысячи раз превышает сопротивление других слоев кожи Сопротивление тела человека при сухой, чистой и неповрежденной коже (измеренное при напряжении 15-20 В) колеблется от 3 до 100 кОм и более, а сопротивление внутренних слоев тела составляет всего 300-500 Ом. В качестве расчетной величины при переменном токе промышленной частоты применяют сопротивление тела человека, равное 1000 Ом.

20

Слайд 20

Сила тока. Основным фактором, обуславливающим исход поражения электрическим током, является сила тока, проходящего через тело человека Ощутимый ток – электрический ток, вызывающий при прохождении через организм ощутимые раздражения: переменный ток 0,6-1,5 мА, постоянный – силой 5-7 мА. Неотпускающий ток – электрический ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. Переменный ток 10-15 мА, постоянный – 50-60 мА. Фибрилляционный ток – электрический ток, вызывающий при прохождении через организм фибрилляцию сердца: переменный ток 100 мА, постоянный 300 мА длительностью 1-2 с. Петли тока: рука – рука, рука – ноги.

21

Слайд 21

Продолжительность воздействия электрического тока. Опасность поражения током вследствие фибрилляции сердца зависит от того, с какой фазой сердечного цикла совпадает время прохождения тока через область сердца. Если длительность прохождения тока равна или превышает время кардиоцикла (0,75-1с), то ток «встречается» со всеми фазами работы сердца (в том числе наиболее уязвимой), что весьма опасно для организма. Если же время воздействия тока меньше продолжительности кардиоцикла на 0,5 с или более, то вероятность совпадения момента прохождения тока с наиболее уязвимой фазой работы сердца, а, следовательно, и опасность поражения резко уменьшаются. Указанное обстоятельство используется в быстродействующих устройствах защитного отключения, где время срабатывания менее 0,2 с.

22

Слайд 22

Путь тока через тело человека. Возможных путей тока в теле человека, которые также называются петлями тока, достаточно много. Наиболее часто встречающиеся петли тока: рука-рука, рука-ноги, нога-нога. Наиболее опасны петли голова-руки и голова-ноги.

23

Слайд 23

Условия внешней среды. № п / п Класс опасности Условия внешней среды 1 Помещения без повышенной опасности Характеризуются отсутствием условий, создающих повышенную или особую опасность. 2 Помещения с повышенной опасностью одного из следующих условий: а) сырости (относительная влажность воздуха длительно превышает 75 %; б) высокой температуры (выше +35 ○ С); в) токопроводящих полов (металлические, земляные, железобетонные, кирпичные и др.); д) возможности одновременного прикосновения человека к имеющим соединения с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и металлическим корпусам электрооборудования – с другой.

24

Слайд 24

3 Особо опасные помещения одного из следующих условий а) особой сырости (относительная влажность воздуха близка к 100 %: потолок, пол и стены, предметы в помещении покрыты влагой; б) химически активной или органической среды (разрушающей изоляцию и токоведущие части электроустановок); в) одновременно двух или более условий повышенной опасности. К таким помещениям относятся и участки работ на земле под открытым небом или под навесом.

25

Слайд 25

Условия поражения электрическим током Напряжение между двумя точками цепи тока, которых одновременно касается человек, называется напряжением прикосновения. Ситуационный анализ поражения электрическим током Наиболее типичны два случая замыкания цепи тока через тело человека: когда человек касается одновременно двух проводов и когда он касается лишь одного провода. Применительно к сетям переменного тока первую схему обычно называют двухфазным прикосновением, а вторую – однофазным.

26

Слайд 26

Двухфазное прикосновение I h = U л / R h = √3 U ф / R h, I h. =1, 73 220/1000 = 380/1000 = 0, 38 А (380 мА)

27

Слайд 27

Однофазное прикосновение а) сеть с изолированной нейтралью I h = U ф / (R h +R ос +R об +R из /3) При подстановке численных значений: R h =1 кОм, R ос. = 30 кОм, R об =20 кОм и R из = 150 кОм I h = 220 / (1000 + 30 000 + 20 000 + 150 000/3) ≈ 2,2 мА при условиях: R ос = R об =0 I h = 220 /(1000 + 150 000 / 3) = 4,4 мА

28

Слайд 28

Сеть с заземленной нейтралью I h = U ф. / (R h. +R ос. +R об. +R о) R ос =0; R об =0 I h. = U ф. / R h. =220/1000 = 0,22 А = 220 мА если R ос =30 кОм и R об =20 кОм, I h =220/1000 + 30 000 + 20 000 = 4,4 мА

29

Слайд 29

Основные причины поражения электрическим током: с лучайное прикосновение к токоведущим частям, находящимся под напряжением в результате: ошибочных действий при проведении работ; неисправности защитных средств, которыми пострадавший касался токоведущих частей и др. п оявление напряжения на металлических конструктивных частях электрооборудования в результате: повреждения изоляции токоведущих частей; замыкания фазы сети на землю; падения провода (находящегося под напряжением) на конструктивные части электрооборудования и др. п оявления напряжения на отключенных токоведущих частях в результате: ошибочного включения отключенной установки; замыкания между отключенными и находящимися под напряжением токоведущими частями: разряда молнии в электроустановку и др. в озникновения напряжения шага на участке земли, где находится человек, в результате замыкания фазы на землю; выноса потенциала протяженным токопроводящим предметом (трубопроводом, железнодорожными рельсами); неисправностей в устройстве защитного заземления и др.

30

Слайд 30

Напряжением шага называется напряжение между точками земли, обусловленное растеканием тока замыкания на землю при одновременном касании их ногами человека.

31

Слайд 31

Технические способы и средства защиты Для обеспечения электробезопасности применяют отдельно или в сочетании один с другим следующие технические способы и средства защиты: недоступность токоведущих частей, находящихся под напряжением, электрическое разделение сети, малые напряжения, двойная изоляция, выравнивание потенциалов, защитное заземление, защитное зануление, защитное отключение и др.

32

Слайд 32

Недоступность токоведущих частей электроустановок для случайного прикосновения может быть обеспечена рядом способов: изоляцией токоведущих частей, ограждением, различными блокировками, размещением токоведущих частей на недоступном расстоянии. Изоляция является основным способом электробезопасности в сетях до 1000В, так как применение изолированных проводов обеспечивает достаточную защиту от напряжения при прикосновении к ним. В соответствии с Правилами сопротивление изоляции каждой фазы относительно земли и между каждой парой фаз на каждом участке между двумя последовательно установленными аппаратами защиты (предохранителями, автоматами и др.) должно быть не ниже 0,5 МОм.

33

Слайд 33

Ограждения в виде корпусов, кожухов, оболочек используются в электрических машинах, аппаратах, приборах. Сплошные ограждения являются обязательными для электроустановок, расположенных в местах, где пребывает не электротехнический персонал (уборщицы и др.). Сетчатые ограждения с размером ячеек (25 х 25) мм. применяются в установках напряжением как до, так и выше 1000 В. В закрытых помещениях их высота должна быть не менее 1, 7 м., а в открытых - не менее 2,0 м., чтобы исключить или сильно затруднить доступ к электроустановкам случайных либо нетрезвых лиц. Сетчатые ограждения имеют двери, запирающиеся на замок.

34

Слайд 34

Механические блокировки находят применение в электрических аппаратах – рубильниках, пускателях, автоматических выключателях и др., работающих в условиях, в которых предъявляются повышенные требования безопасности (судовые, подземные и тому подобные электроустановки). Электрические блокировки осуществляют разрыв цепи специальными контактами, которые устанавливаются на дверях ограждений, крышках и дверцах кожухов. При дистанционном управлении электроустановкой блокировочные контакты включаются в цепь управления пускового аппарата, а не в силовую цепь электроустановки. В радиоаппаратуре применяются блочные схемы со штепсельными соединениями, которые автоматически разрывают цепь.

35

Слайд 35

Расположение токоведущих частей на недоступной высоте или в недоступном месте позволяет обеспечить безопасность без ограждений. При этом учитывается возможность случайного прикосновения к токоведущим частям посредством длинных предметов, которые человек может держать в руках. Поэтому вне помещений неизолированные провода при напряжении до 1000 В должны быть расположены на высоте не менее 6 м., а внутри помещений – не ниже 3, 5 м. Электрическое разделение сетей – это разделение электрической сети на отдельные электрически несвязанные между собой участки с помощью разделительных трансформаторов Эта мера защиты применяется в разветвленной электри-ческой сети, которая имеет значительную емкость и соответственно небольшое сопротивление изоляции относительно земли.

36

Слайд 36

Малое напряжение – это номинальное напряжение не более 42В., применяемое в целях уменьшения опасности поражения электрическим током. Двойная изоляция – надежное средство защиты человека от поражения электрическим током. Состоит из основной и дополнительной. Основная (рабочая) электрическая изоляция токоведущих частей электроустановки обеспечивает нормальную её работу и защиту от поражения электрическим током, а дополнительная – служит для защиты от поражения в случае повреждения основной.

39

Слайд 39

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении опасности поражения током.

40

Слайд 40

Средства защиты, используемые в электроустановках Основные электрозащитные средства – это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением. (Штанги изолирующие. Клещи изолирующие. Клещи электроизмерительные Указатели напряжения Инструмент слесарно-монтажный с изолирующими рукоятками Переносные заземления Диэлектрические перчатки). Дополнительные электрозащитные средства - это средства защиты, дополняющие основные средства, а также служащие для защиты от напряжения прикосновения и напряжения шага, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.(Диэлектрические галоши или сапоги. Изолирующие подставки и накладки. Диэлектрические коврики.)

44

Слайд 44

Способы оказания первой помощи. -уложить пострадавшего на спину на твердую поверхность; -проверить наличие у пострадавшего пульса, дыхания; -выяснить состояние зрачка – узкий или расширенный; -вызвать врача, независимо от состояния пострадавшего; -начать оказание соответствующей помощи пострадавшему. П острадавший находится в сознании, но до этого был в состоянии обморока, или продолжительное время находился под током, Удобно уложить на подстилку, накрыть чем-нибудь (одеждой) и до прибытия врача обеспечить полный покой, непрерывно наблюдая за дыханием и пульсом; Сознание отсутствует, но сохранились устойчивые пульс и дыхание Удобно уложить пострадавшего на подстилку, расстегнуть пояс и одежду, обеспечить приток свежего воздуха и полный покой, дать пострадавшему нюхать нашатырный спирт и обрызгать его водой;

45

Последний слайд презентации: ТЕХНОГЕННЫЕ ОПАСНОСТИ

Отсутствуют признаки жизни (дыхание, сердцебиение, пульс). Немедленно начать делать искусственное дыхание и массаж сердца. Заключение о с мерти пострадавшего может дать только врач.

Техногенная безопасность


Характеристика техногенных опасностей Техногенная опасность – состояние, внутренне присущее технической системе, промышленному или транспортному объекту, реализуемое в виде поражающих воздействий источника техногенной чрезвычайной ситуации на человека и окружающую среду при его возникновении, либо в виде прямого или косвенного ущерба для человека и окружающей среды в процессе нормальной эксплуатации этих объектов. К техногенным относятся чрезвычайные ситуации, происхождение которых связано с производственно-хозяйственной деятельностью человека на объектах техносферы. Как правило, техногенные ЧС возникают вследствие аварий, сопровождающихся самопроизвольным выходом в окружающее пространство вещества и (или) энергии. Базовая классификация ЧС техногенного характера строится по типам и видам чрезвычайных событий, инициирующих ЧС: · транспортные аварии (катастрофы); · пожары, взрывы, угроза взрывов; · аварии с выбросом (угрозой выброса) ХОВ; · аварии с выбросом (угрозой выброса) РВ; · аварии с выбросом (угрозой выброса) биологически опасных веществ; · внезапное обрушение зданий, сооружений; · аварии на электроэнергетических системах; · аварии в коммунальных системах жизнеобеспечения; · аварии на очистных сооружениях; · гидродинамические аварии.

Последствия воздействия техногенных опасностей на природную среду Предприятия химической и нефтехимической промышленности являются основными источниками целого ряда разнообразных токсичных веществ. К ним в первую очередь следует отнести органические растворители, амины, альдегиды, хлор, оксиды серы и азота, соединения фосфора, ртути. Также, кроме промышленности, транспорта и сельского хозяйства, источниками загрязнения почвы являются жилые дома и бытовые предприятия. Загрязняющими веществами являются бытовой мусор, пищевые отходы, фекалии, строительный мусор, пришедшие в негодность предметы домашнего обихода, мусор и т. д. Загрязнение атмосферы выражается в недостатке кислорода, высоком уровне шумов, кислотных осадках, разрушении озонового слоя. Резкое ухудшение санитарно-гигиенических показателей качества воды связано с термическим загрязнением, то есть с изменением температурного режима водоемов под влиянием промышленных стоков. Больше всего загрязняющей теплоты производят электростанции, сталепрокатные цеха, нефтеочистные, химические и целлюлозно-бумажные предприятия.


Обобщенные причины техногенных катастроф: 1. Авиакатастрофы: Причинами авиакатастроф являются: неисправность двигателей, ошибка пилота, неблагоприятные погодные условия, террористические акты, столкновение с посторонним объектом, поражение боевым оружием. · 27 марта 1977г. – два «Боинг-727» столкнулись на взлетно-посадочной полосе аэропорта Тенерифе на Канарах. Число жертв 582. 2. Взрывы: Причины взрывов: ошибки и присчеты людей, присутствие ядовитых газов, избыток взрывоопасной пыли, хранение старых боеприпасов, перегрузка судна, террористические акты. · 12 февраля 1931г. – шахта в Маньчжурии. Число жертв 3000. 3. Железнодорожные катастрофы Причины: неисправные и перегруженные поезда. · 9 июля 1918 г. – два пассажирских поезда столкнулись на дороге между Нэшвилом и Сент-Луисом, США, самая страшная железнодорожная катастрофа в истории страны. Число жертв 101. 4. Пожары Причины: человеческие ошибки, небрежность и злой умысел; землетрясения, войны. · 20 августа 1949г. – кинотеатр в Абадане, Иран. Число жертв 422. 5. Экологические катастрофы Причины: пренебрежение мерами безопасности, халатность персонала предприятий, политические и административные амбиции, алчность, бездумное стремление к экономии средств и к дезинформации или полному утаиванию сведений о катастрофе. · 24 января 1991г. – Ирак начал сливать сырую нефть из кувейтских скважин в море. Персидский залив стал зоной экологического бедствия.

Различные аварии 1. Аварии на гидротехнических сооружениях (аварии на ГЭС) Опасность возникновения затопления низких близлежащих районов при разрушении плотин, дамб и гидроузлов. Стремительный и мощный поток воды может вымывать почвы со всей растительностью, смывать чернозем. Существует опасность возникновения селей. При достаточно высоких волнах животные на территории места затопления выбираются на возвышенности, могут провести там достаточно много времени. 2. Аварии на АЭС Гипотетические тяжелые аварии на атомных электростанциях могут привести к образованию «черного столба», когда выбросы при аварии распространяются в атмосфере и больше всего от радиации страдают почвы, растения и животные . У животных, как и у людей, отмечаются случаи заболевания лучевой болезнью. Также последствиями радиации становятся торможение роста растительности, уменьшение популяций животных в близлежащих территориях аварии. К поражающим факторам можно отнести ударную волну, световое излучение, проникающую радиацию, радиоактивное загрязнение местности и электромагнитный импульс. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу. Световое излучение ядерного взрыва представляет поток лучистой энергии, включающий ультрафиолето вое, видимое и инфракрасное свечение. Аварии с выбросом (угрозой выброса) радиоактивных веществ (РВ) Воздействие радиации приводит к гибели живых организмов. В результате радиационного заражения развивается лучевая болезнь, нарушающая генетику организма. Появление излучения связано с функционированием предприятий, и использующих радиоактивные материалы, авариями на ядерных установках и деятельностью организаций по переработке и захоронению радиоактивных отходов. Аварии с выбросом (угрозой выброса) биологически опасных веществ БОВ Биологически опасные вещества БОВ – называют вещества, способные вызвать массовые инфекционные заболевания людей и животных при попадании в организм в ничтожно малых количествах. К БОВ относятся болезнетворные микробы и бактерии возбудители различных особо опасных инфекционных заболеваний: чумы, холеры, натуральной оспы,сибирской язвы и т.д.


Концепция техногенной безопасности Концепция, разработанная академиком В. А. Легасовым в 1986-87, является результатом его работы по ликвидации последствий Чернобыльской катастрофы и анализе ее причин. В ней констатируется, что научно-техническая революция привела мир на грань мощнейших кризисных явлений, угрожающих жизни человека. Названы девять "граней" - причин, угрожающих в конечном счете жизни: угроза ядерной и вообще военной катастрофы; угроза разрушительного действия крупных промышленных аварий, сравнимая с военной; усиливающееся стационарное воздействие развивающейся деятельности людей на окружающую среду и здоровье человека; нарушение социальной, экономической, ресурсной гармонии как межличностной, так и межгосударственной; перекачка избыточной доли интеллектуальных ресурсов из гуманитарной в техническую сферу; потеря заметной частью общества ранее добытых нравственных правил и, как следствие, распространение наркомании, проституции, новых болезней; отчуждение все большего количества людей, занятых в производстве, от решения проблем этого производства, от управления им; обострение, вплоть до вооруженных конфликтов, расовых, национальных, классовых и религиозных противоречий; развитие терроризм а как средства решения личностных, национальных или политических конфликтов. По мнению В.А. Легасова, вся сумма перечисленных факторов означает, что завершен продолжавшийся четыре столетия этап промышленной революции. Бездумное линейное продолжение сложившихся традиций, институтов, способов решения проблем по любой из вышеперечисленных причин способно привести мир к необратимой катастрофе.


Во Владимире приняты все меры по обеспечению безопасности на выборах Об обеспечении безопасности во время подготовки и проведения выборов 13 марта шла речь на заседании городской антитеррористической комиссии, которое состоялось накануне в администрации Владимира. Как заявил начальник городского УВД Александр Разов, для этих целей разработан план охраны правопорядка и общественной безопасности на данный период, за каждым избирательным участком закреплены сотрудники, с которыми проведены необходимые занятия. Непосредственно перед выборами каждый избирательный участок в городе будет дополнительно обследован со служебными собаками, а весь состав УВД переведён на усиленный вариант несения службы. Кроме того, для обеспечения правопорядка в День голосования будут привлечены 100 сотрудников частных охранных предприятий.


Спасибо за внимание

1.Электробезопасность

2.Эксплуатация сосудов, работающих под давлением

3.Эксплуатация подъемно- транспортного

оборудования

Техногенные опасности

Техногенные опасности- возникающие в процессе функционирования технических объектов и связанные с природой машин, механизмов, технических устройств

Различают:

Антропогенные (устраняются мероприятиями, направленными на человека, например, требования ПДД)

Техногенные (устраняются мероприятиями, направленными на совершенствование техники, например, совершенствование автомобиля)

Уровень риска-5х10-6

организм

Напряжение U, (в, вольт)

Сопротивление R, (ом) 2.Факторы опасности:

Величина силы тока (основной фактор)

Величина напряжения (определяется в зависимости от силы тока по закону Ома)

Электрическое сопротивление тела человека

Продолжительность воздействия

Путь тока через тело

Род и частота тока

Условия внешней среды

3.Воздействие тока на человека:

Термическое (выделение тепловой энергии)

Электролитическое (электролиз биологических жидкостей)

Биологическое (сокращение мышц и тканей) 4.Результаты воздействия (поражения):

Ожоги –токовый (электроэнергия переходит в тепловую, U<1-2кВ) и дуговой (возникает электродуга с Т>3500 C

Различаются по тяжести поражения: 1степени-покраснение кожи, 2-ой-образование пузырей, 3- ей-омертвение кожи, 4-ой-обугливание

Электроудар- возбуждение живых тканей и непроизвольное сокращение мышц

Различаются:1-ой степени (без потери сознания), 2-ой степени-с потерей сознания,3-ей степени- потеря сознания и нарушение сердечной деятельности, 4-ой-клиническая смерть Наиболее опасно –остановка сердца и фибрилляция (беспорядочное сокращение сердечной мышцы)

Электрошок- резкое падение функций (потеря сознания, нарушение сердечной деятельности) до суток

Электрический ток и его воздействие на

организм

Влияние силы тока:

Сила тока, мА

Результат воздействия

Переменный ток частотой

Постоянный ток

Нижний порог ощущения –

Не ощущается

слабый зуд кожи

Сильное дрожание пальцев

Не ощущается

Судороги в кисти руки

Нижний порог:

зуд, нагрев кожи

Неотпускающий ток-

Сильный нагрев,

судорожные сокращения

сокращение мышц

мышц руки с проводником

Невозможно оторвать руку,

Судороги, сильный

сильные боли, дыхание

затруднено

Паралич дыхания, перебои

Неотпускающий

Фибрилляция сердца,

Паралич дыхания

дыхание прекращается

Фибрилляция

Влияние электрического сопротивления:

Эл. сопротивление тела определяется состоянием кожи (эпидермис-диэлектрик):

При постоянном токе (U=15-20 В)

RТЕЛА =3-100 кОм,

Переменном токе-

R ТЕЛА =1000 Ом

R ТЕЛА зависит от:

состояния кожи (влажность, целостность покрова)

состояния среды(влажности, степени ионизации)

Сопротивление уменьшается: с увеличением силы тока, его напряжения и частоты, продолжительности действия.

Влияние продолжительности действия тока:

С увеличением времени тяжесть последствий возрастает.Опасно-0,75-1,0 с (длительность кардиоцикла), допустимо-0,5 с, расчет времени действия защитных средств-0,2 с

Критерии безопасности:

Влияние рода тока и его частоты:

При U<250 В переменный ток в 4-5 раз опаснее постоянного, при U>300 В опаснее постоянный Наиболее опасная частота-50-100Гц

Электрический ток и его воздействие на

организм

Путь тока через тело (петли тока)

Путь тока

Частота случаев,

Доля потерявших

сознание

Рука-нога

Правая рука-нога

Левая рука-нога

Нога-нога

Голова-ноги

Голова-руки

Первая помощь при поражении электротоком:

1.Освободить тело человека от напряжения:

Отключить установку

Освободить все части тела от токоведущих частей оборудования

Вызвать скорую медицинскую помощь 2.Оказать пострадавшему доврачебную медицинскую помощь:

Уложить спиной на твердую поверхность

Проверить наличие пульса и дыхания, состояние зрачка Пульс редкий- сделать массаж сердца, Плохо дышит- сделать искусственное

дыхание, Без сознания- обеспечить приток воздуха, покой, привести в сознание, В сознании- накрыть, обеспечить покой, следить за пульсом и дыханием

Электрический ток и его воздействие на

организм

Основные причины поражения током:

1)Случайное прикосновение к токоведущим частям в результате:

Ошибочных действий

Неисправности защитных средств

2)Появление напряжения на металлических конструкциях в результате:

Пробоя изоляции

Падения токоведущего провода

Замыкания фазы на землю

3)Появление напряжения на тоководущих частях (при отключенной установке) в результате:

Ошибочного включения установки

Разряда молнии

Короткого замыкания между находящимися под напряжением частями

4)Возникновение шагового напряжения(обусловлено растеканием тока замыкания на землю) в результате:

Замыкания фазы на землю (например, касание провода с землей)

Неисправности защитного заземления

Электрический ток и его воздействие на организм

Шаговое напряжение (Uш):

UЗ =IЗ xR

Uш= А - В х

Uш = А- В= Iз a/2 x(x+a) (2), где

Потенциал напряжения в заданной точке Х от места замыкания на землю,Iз- ток замыкания,

Удельное сопротивление грунта, а=0,8 м-длина шага

Электрический ток и его воздействие на

Напряжение прикосновения организм

Возможны 2 случая попадания под напряжение:

Человек касается одновременно 2-х проводов (двухфазное) -наиболее опасный случай

Человек касается одного провода (однофазное)

Двухфазное касание токоведущих частей 3-х фазной сети с изолированной нейтралью:

человека, А

Iч-ток через

Uл- линейное

напряжение (380 В)

Uф-фазовое

напряжение (220В)

сопротивление человека (1 кОм)

Iч =Uл/Rч=1,732Uф/Rч=0,381 А> Iч (доп.)=0,1А

Электрический ток и его воздействие на

организм

Способы и средства электробезопасности

1.Классификация помещений и использование специального электрооборудования

Эксплуатация электрооборудования должна учитывать условия среды: запыленность токопроводящими частицами, влажность, наличие едких газов и паров

Помещения делятся на классы:

Без повышенной опасности

С повышенной опасностью

Особо опасные помещения

*относительная влажность воздуха более 75%; *температура более 35 С *наличие токопроводящей пыли *наличие токопроводящих полов

*возможность контакта с электрооборудованием 2. Технические средства и способы защиты

Недоступность токоведущих частей Обеспечивается :надежная изоляция (для напряжения до 1000 В сопротивление

изоляции не менее 0, 5 Мом), применение ограждений, блокировки оборудования, расположение оборудования в недоступных местах (например, высота электропередач напряжением 110 кВ 220 кВ, 400-500 кВ, 750 кВ соответственно 1;2;3,5;5 м)

Применение малых напряжений (15 В, 36 В, 110 В –безопасные)

Применение защитного заземления

Применение защитного зануления

Применение защитного отключения (быстродействующее отключение напряжения)

Применение знаков безопасности

Применение СИЗ

Слайд 3

Противоречия во взаимодействиях элементов системы «природная среда -техносфера - общество»

Неспособность природной среды в полной степени удовлетворять растущие потребности общества; чрезмерная эксплуатация природных ресурсов на фоне ограниченных возможностей для их восстановления; обострение дилеммы научно-технического прогресса: с одной стороны, высокие темпы развития техносферы в XX веке и выдающиеся достижения (атомная, космическая, авиационная, энергетическая и химическая техника, электроника, генная инженерия и т. д.), а с другой - возникновение и нарастание потенциальных и реальных угроз человеку, обществу, среде обитания со стороны объектов техносферы.

Слайд 4

Аварии на нефтяных месторождениях

  • Слайд 5

    1.Тенденции в области природно-техногенной безопасности

    противоречия во взаимодействиях элементов системы «природная среда - техносфера - общество» привели к росту числа чрезвычайных ситуаций (ЧС) природно-техногенного и техногенного характера

    Слайд 6

    Динамика коэффициента относительного роста числа чрезвычайных ситуаций (Кчс)

    Слайд 7

    Особенность России

    Особенностью России стало то, что рост числа ЧС в последнее десятилетие сопровождался сокращением темпов и объемов производства до 40-50% (в фондообразующих отраслях - до 70-95%).

    Слайд 8

    Темпы прироста машиностроительного производства

  • Слайд 9

    Взрыв в китайской шахте - погибли 68 человек./ 28.11.2005, 9:25 / В результате взрыва на шахте в северо-восточной китайской провинции Хэйлунцзян погибли 68 горняков. Германию завалило снегом - есть жертвы./ 28.11.2005, 9:05 / Две тысячи аварий, около полутора сотен пострадавших, один погибший и свыше шести миллионов евро ущерба стали результатом снегопада в Германии. Более 100 тыс. немцев остаются без света после снежной бури./ 27.11.2005, 14:31 / В германской земле Северный Рейн-Вестфалия до сих пор не удается восстановить энергоснабжение, прерванное из-за сильной снежной бури. Без света остаются около 120 тыс. человек. В Индии столкнулись два поезда./ 25.11.2005, 9:48 / В индийском штате западная Бенгалия в результате столкновения двух поездов ранены по меньшей мере два человека. В пятницу на станции Панскура (100 км от Калькутты) пассажирский экспресс врезался в стоящий пригородный поезд.

    Слайд 10

    Чрезвычайные аварии и катастрофы одного месяца

    24.11.2005 // В Охотском море зафиксировано землетрясение силой 6,8 балла. 24.11.2005 // У берегов Греции терпит бедствие яхта под украинским флагом. 23.11.2005 // Загрязненная при аварии в Китае вода Амура может достичь Хабаровска. 23.11.2005 // В Турции электричка столкнулась с грузовиком, 9 человек погибли. 22.11.2005 // Шторм "Гамма" потрепал Гондурас. 18.11.2005 // Жертвами наводнения в Колумбии стали 172 человека. 16.11.2005 // Экологическая аварии в Керчи - 50 тысяч жителей остались без воды. 15.11.2005 // 10 тыс. человек эвакуируют в Колумбии от проснувшегося вулкана. 14.11.2005 // Серия взрывов на химическом заводе в Китае: 1 погиб, 70 ранены. 11.11.2005 // В Якутии произошло землетрясение магнитудой 6,0 по шкале Рихтера.

    Слайд 11

    Аварии на месторождениях

    в районе города Новый Уренгой произошла авария на месторождении "Песцовое", принадлежащее ОАО "Газпром". Разгерметизировалась задвижка в здании запарной арматуры и произошла утечка газа. В пятницу ночью задвижки были перекрыты, газ стравлен. На месте происшествия работали три пожарных расчета ГПС округа и работники "Уренгойгазпрома". Во время работы по ликвидации аварии семеро работников предприятия получили отравление природным газом. Всем пострадавших была оказана медицинская помощь. В настоящее время их состояние оценивается как удовлетворительное. Обстоятельства происшествия устанавливаются. Компания начала расследование причин аварии.

    Слайд 12

    Аварии на транспорте

  • Слайд 13

    Авария на химическом заводе в Китае

  • Слайд 14

    Динамика изменения количества пострадавших и погибших от ЧСприродного и техногенного характерав 1996-2001 г.г.

    Слайд 15

    Динамика изменения числа ЧСприродного и техногенного характерав 1996-2001 г.г.

    Слайд 16

    Динамика количества чрезвычайных ситуаций за период 1997–2004 гг.

  • Слайд 17

    Динамика численности погибших в чрезвычайных ситуацияхза период 1997–2004 гг.

    Слайд 18

    Структура количественных показателей ЧС по их видам

  • Слайд 19

    Слайд 20

    2. Почему не уменьшается количество аварий и ЧС техногенного характера?

    Казалось бы, накоплен солидный опыт в деле предупреждения и ликвидации аварий, проанализированы и вскрыты причины и условия их возникновения, принимаются последующие соответствующие меры безопасности. Однако кривые роста количества и тяжести техногенных происшествий не обнаруживают заметных тенденций к качественному снижению.

    Слайд 21

    Почему не уменьшается количество аварий и ЧС техногенного характера?

    А). Научно-технический прогресс и развитие производительных сил общества приводят ко всё возрастающему насыщению техносферы рукотворными (техническими) объектами, в которых аккумулированы искусственно созданные энергетические запасы, представляющие потенциальную опасность для человека и окружающей его среды. (Любой технический объект, имеющий или использующий искусственный запас энергии, потенциально опасен. К тому же скорость нарастания численности технических объектов в техносфере сопоставима или больше общего возрастания их надежности (хотя вновь строящиеся ОПО и имеют более высокую надежность, однако надежность эксплуатирующихся ОПО только снижается со временем).

    Слайд 22

    Б). На практике наблюдается приоритет использования методов ликвидации последствий аварии над методами совершенствования безопасности. Большинство мер безопасности осуществляемых на ОПО носят характер “методов пожарной команды”. (Увы, эти методы имеют ярко выраженную популистскую основу,- чем крупнее авария, тем эффектней спасение и телекартинка).

    Слайд 23

    . Основные причины роста числа техногенных ЧС:

    недопустимо высокий уровень износа основных фондов и исчерпание проектных ресурсов машин и оборудования (до 50-80% в энергетике, нефтегазохимии, на транспорте); (вывод из эксплуатации потенциально опасных объектов, выработавших ресурс или срок службы – сложная научно-техническая, экономическая и социальная проблема)

    Слайд 24

    низкий уровень инвестиций и, как следствие, невозможность реконструкции и обновления основных фондов (ежегодно менее 1-5%); недостаточная нормативно-правовая база в области природно -техногенной безопасности на федеральном и региональном уровнях.

    Слайд 25

    Причины аварий на промышленных объектах

    в нефтяной и нефтеперерабатывающей промышленности: коррозия металла труб и повреждение трубопроводов или конструкций резервуаров (возрастной состав промысловых трубопроводов: до 15 лет – 63 %, более 15 лет – 37 % при фактическом сроке службы – 20 лет); несанкционированные врезки сторонних лиц; нарушение обслуживающим персоналом техники безопасности и правил пожарной безопасности; конструктивные недоработки и некачественный ремонт оборудования; заводской дефект труб; брак, допущенный в ходе строительно-монтажных работ, и нарушение их норм подрядными организациями др.

    Слайд 26

    в газовой промышленности:

    стресс-коррозия; несанкционированное проведение различными вневедомственными организациями земляных работ в охранных зонах газопроводов без учета минимальных (безопасных) расстояний от оси трубопровода.

    Слайд 27

    в угольной промышленности:

    аварии в шахтах (взрывы метана и угольной пыли, пожары и обрушение горных пород, недостаточно квалифицированное крепление различного оборудования и замена крепи, а также сложные условия работы комбайнов в забоях); пожары в шахтах, вызванные возгоранием конвейерной ленты, электрооборудования, а также подрывами угля; другие аварийные ситуации, которые могут привести к весьма тяжелым последствиям (инверсия воздуха в угольный разрез отключение электроэнергии в шахтах

    Слайд 28

    в электроэнергетике:

    нарастание объемов выработавшего ресурс оборудования; отсутствие бюджетного финансирования на строительство новых электростанций; крайне напряженная обстановка с обеспечением электростанций топливом; расположение объектов энергетики на территориях с неблагоприятными природными условиями (в зонах сейсмической активности, северных районах); концентрация производственных мощностей на ограниченной площади и в непосредственной близости к городам и населенным пунктам; просчеты в проектировании, неудовлетворительное качество и недоделки строительных и монтажных работ на вновь вводимых объектах и др.

    См. лекцию «Классификация опасностей и рисков»

    Слайд 32

    Радиационные (поля излучения), Механические (ударные нагрузки, колебания грунта), Баллистические (осколочные поля), Термические (тепловой поток), Электромагнитные (грозовые разряды), Избыточные концентрации радиоактивных веществ, канцерогенов и токсикантов Отравление химически опасными веществами Бактериологическое заражение Взрывные и ударные волны Импульсные ускорения Поражающие факторы, возникающие при опасных событиях:

    Слайд 33

    опасность объекта

    Его свойство, состоящее в возможности в процессе эксплуатации при определенных обстоятельствах причинять ущерб человеку и ОПС

    Слайд 34

    Потенциально опасные объекты

    объекты, в которых запасена значительная энергия и (или) которые используют, производят нарабатывают, хранят или транспортируют радиоактивные, пожаровзрывоопасные, опасные химические и биологические вещества

    Слайд 35

    3.2 Классификация опасных производственных объектов

    По накопленному потенциалу опасности - по механизму ущерба - по виду опасности - по характеру ЧС

    Слайд 36

    3.3 Требования к декларации безопасности некоторых видов производственных объектов

    3.4 Анализ техногенного риска

    Посмотреть все слайды

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Тема: Источники химической опасности техногенного происхождения.

    Техногенное загрязнение окружающей среды

    ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ Основные источники загрязнения Основные вредные вещества Атмосфера Промышленность Транспорт Тепловые электростанции Оксиды углерода, серы, азота Органические соединения Промышленная пыль Гидросфера Сточные воды Утечки нефти Автотранспорт Тяжелые металлы Нефть Нефтепродукты Литосфера Отходы промышленности и Сельского хозяйства Избыточное использование Удобрений Пластмассы Резина Тяжелые металлы

    Аварийно химически опасные вещества (АХОВ)

    АХОВ - аварийно химически опасные вещества или их соединения, которые при попадании в окружающую среду способны вызвать чрезвычайную ситуацию: заразить воздух, воду, почву, привести к отравлению и гибели людей, животных, растений В соответствии с ГОСТ 12.1.007-76 (99) «Вредные вещества. Классификация и общие требования безопасности», по степени воздействия на организм человека АХОВ разделяются на 4 класса опасности: 1 класс, чрезвычайно опасные: фтористый водород, хлорокись фосфора, этиленимин, ртуть. 2 класс, высокоопасные: акролеин, мышьяковистый водород, синильная кислота, диметиламин, сероуглерод, фтор, хлор и т. д. 3 класс, умеренноопасные: хлористый водород, бромистый водород, сероводород, триметиламин и др. 4 класс, малоопасные: аммиак, метилакрилат, ацетон. Вещества 1 и 2 классов опасности способны образовывать опасные для жизни концентрации даже при незначительных утечках. Основные особенности АХОВ: - способность по направлению ветра переноситься на большие расстояния, где и вызывать поражение людей; - объемность действия, то есть способность зараженного воздуха проникать в негерметизированные помещения; - большое разнообразие АХОВ, что создает трудности в создании фильтрующих противогазов; - способность многих АХОВ оказывать не только непосредственное действие, но и заражать людей посредством воды, продуктов, окружающих предметов.

    Для характеристики токсических свойств АХОВ используются понятия: предельно допустимая концентрация (ПДК) вредного вещества и токсическая доза (токсодоза). ПДК - концентрация, которая при ежедневном воздействии на человека в течение длительного времени не вызывает паталогических изменений или заболеваний, обнаруживаемых современными методами диагностики. Она относится к 8-часовому рабочему дню и не может использоваться для оценки опасности аварийных ситуации в связи с тем, что в чрезвычайных случаях время воздействия АХОВ весьма ограниченно. Под токсодозой понимается количество вещества, вызывающее определённый токсический эффект. Наименование показателя Норма для класса опасности 1-ого 2-ого 3-ого 4-ого Предельно допустимая концентрация (ПДК) вредных веществ в воздухе рабочей зоны, мг/ куб.м Менее 0,1 0,1-1,0 1,1-10,0 Более 10,0 Средняя смертельная доза при введении в желудок, мг/кг Менее 15 15-150 150-5000 Более 50000 Средняя смертельная доза при нанесении на кожу, мг/кг Менее 100 100-500 501-2500 Более 2500 Средняя смертельная концентрация в воздухе, мг/куб.м Менее 500 500-5000 5001-50000 Более 50000 Коэффициент возможности ингаляционного отравления (КВИО) Более 300 300-30 29-3 Менее 3 Зона острого действия Менее 6,0 6,0-18,0 18,1-54,0 Более 54,0 Зона хронического действия Более 10,0 10,0-5,0 4,9-2,5 Менее 2,5

    Химически опасные объекты и аварии на них

    Химически опасные объекты (ХОО) - это объекты, при аварии на которых или разрушении которых может произойти поражение людей, сельскохозяйственных животных и растений, либо химическое заражение окружающей природной среды опасными химическими веществами в концентрациях или количествах, превышающих естественный уровень их содержания в среде. Главный поражающий фактор при аварии на ХОО - химическое заражение приземного слоя атмосферы; вместе с тем возможное заражение водных источников, почвы, растительности. Эти аварии нередко сопровождаются пожарами и взрывами. Наиболее опасны аварии предприятиях, производящих, использующих или хранящих ядовитые вещества и взрывоопасны материалы. К ним относятся заводы и комбинаты химической, нефтехимической, нефтеперерабатывающей промышленности. Особую опасность представляют собой аварии на железнодорожном транспорте, сопровождающиеся разливом перевозимых сильнодействующих ядовитых веществ (СДЯВ). Сильнодействующие ядовитые вещества (СДЯВ) - химические соединения, обладающие высокой токсичностью и способные при определенных условиях (в основном при авариях на химически опасных объектах) вызывать массовые отравления людей и животных, а также заражать окружающую среду. В настоящее время взамен термина СДЯВ используется термин Аварийно химически опасное вещество (АХОВ). С учетом скорости поступления АХОВ в окружающую среду при авариях и катастрофах временной фактор в организации и осуществлении химического контроля имеет первостепенное значение. С этой целью еще в период нормального функционирования ХОО выполняют следующие мероприятия: 1) Устанавливают стационарные химические датчики в цехах на территории объекта, в санитарно-защитной зоне объекта и в населенных пунктах, расположенных вблизи объекта. 2) Создают автоматизированную систему контроля химического заражения и оповещение персонала объекта и населения в потенциальной зоне чрезвычайно опасного заражения. 3) Осуществляют периодический контроль концентрации АХОВ в производственных помещениях объекта и вне их силами отделений контроля за окружающей средой лабораторий объекта, стационарными и подвижными средствами гидрометеослужбы и санэпидемстанций.

    В России насчитывается более трех тысяч шестисот химически опасных объектов, а сто сорок шесть городов с населением более ста тысяч человек расположены в зонах повышенной химической опасности. Район Используемые и хранимые химически опасные вещества Общее количество, тыс. т Поволжский Аммиак, хлор и др. 146,3 Центрально-Черноземный Хлор, аммиак и др. 124,4 Центральный Аммиак, хлор, синильная и соляная кисло­ты, хлорпикрин, нитрил акриловой кисло­ты, сероуглерод 77,2 Западно-Сибирский Аммиак, хлор, сероуглерод, хлористый водород, сернистый ангидрид, фтористый водород, ацетонитрил 50,9 Северо-Западный Аммиак, хлор, нитрил акриловой кислоты, водород фтористый и др. 48,5 Уральский Аммиак, хлор, нитрил акриловой кислоты, водород фтористый и др. 48,5 Волго-Вятский Хлор, аммиак, соляная кислота, фосген и др. 46,2 Северный Аммиак, хлор, сернистый ангидрид, соля­ная кислота и др. 25,2 Районы Российской Федерации с высокой концентрацией химически опасных объектов Причины аварий: нарушения техники безопасности по транспорти­ровке и хранению ядовитых веществ; выход из строя агрегатов, трубопроводов, разгер­метизация емкостей хранения; превышение нормативных запасов; нарушение установленных норм и правил разме­щения химически опасных объектов; выход на полную производственную мощность пред­приятий химической промышленности, вызванный стремлением зарубежных предпринимателей инвести­ровать средства во вредные производства в России; возрастание терроризма на химически опасных объектах; изношенность системы жизнеобеспечения населе­ния; размещение зарубежными фирмами на террито­рии России экологически опасных предприятий; ввоз из-за границы опасных отходов и захороне­ние их на территории России (иногда их даже остав­ляют в железнодорожных вагонах). Каждые сутки в мире регистрируют около 20 хи­мических аварий. Одна из крупнейших катастроф XX века - взрыв в 1985 году в Индии, в Бхопале на пред­приятии « Юнион -карбид». В результате в окружающую среду попало 45 т метилизоцианата, погибло 3 000 че­ловек, 300 000 стали инвалидами.


  • Статьи по теме