Частота вращения выходного вала редуктора. Действительная частота вращения выходного вала

ВВЕДЕНИЕ

Червячная передача относится к передачам зацеплением с перекрещивающимися осями валов.

Основные достоинства червячных передач: возможность получения больших передаточных чисел в одной паре, плавность зацепления, возможность самоторможения. Недостатки: сравнительно низкий к.п.д., повышенный износ и склонность к заеданию, необходимость применения для колес дорогих антифрикционных материалов.

Червячные передачи дороже и сложнее зубчатых, поэтому их применяют, как правило, при необходимости передачи движения между перекрещивающимися валами, а также там, где необходимо большое передаточное отношение.

Критерием работоспособности червячных передач является поверхностная прочность зубьев, обеспечивающая их износостойкость и отсутствие выкрашивания и заедания, а также изгибная прочность. При действии в червячном зацеплении кратковременных перегрузок проводится проверка зубьев червячного колеса на изгиб по максимальной нагрузке.

Для тела червяка осуществляется проверочный расчет на жесткость, а также проводится тепловой расчет.

Проектирование осуществляется в два этапа: проектировочный - из условий контактной выносливости определяются основные размеры передачи и проверочный - при известных параметрах передачи в условиях ее работы определяются контактные и изгибные напряжения и сравниваются с допускаемыми по выносливости материала.

Определяются силы, нагружающие подшипники и производится подбор подшипников по грузоподъемности.

КИНЕМАТИЧЕСКИЙ И СИЛОВОЙ РАСЧЕТ

Выбор электродвигателя

Для выбора электродвигателя определяются требуемая его мощность и частота вращения.

Согласно исходным данным на проектирование, требуемую мощность для выполнения технологического процесса можно найти из формулы:

Р вых =F t V, (2.1)

где Р вых - мощность на выходном валу привода, Вт;

F t - тяговое усилие, Н;

V - скорость движения рабочего органа, м/с;

Р вых = 1,5 кВт.

Определение общего К.П.Д. привода

Тогда в соответствии с кинематической цепочкой передачи мощности общий К.П.Д. всего привода рассчитывается по формуле:

з общ = з 1 з 2 з 3 з 4 (2.2)

з общ = 0,80,950,980,99 = 0,74.

Таким образом, из расчета общего К.П.Д. стало видно, что в процессе работы привода только 74% мощности от двигателя будет поступать к барабану лебедки.

Определим требуемую мощность двигателя для нормальной работы лебедки:

Принимаем двигатель мощностью 2,2 кВт.

Расчет частоты вращения вала электродвигателя

Поскольку на данном этапе еще неизвестны передаточные числа передач привода и не известна частота вращения вала двигателя, возникает возможность рассчитать желаемую частоту вращения вала электродвигателя.

Для этого проведены следующие расчеты.

Определение частоты вращения выходного вала привода

Согласно исходным данным угловая скорость выходного вала рассчитывается по формуле:

где щ - угловая скорость, с -1 ;

D б - диаметр барабана, м;

v - скорость движения рабочего органа, м/с.

Найдем частоту вращения, зная угловую скорость по формуле:

об/мин. (2.5)

Определение желаемого передаточного числа привода

Из анализа кинематической схемы привода электролебедки видно, что общее передаточное число его (u общ) образуется за счет передаточного числа редуктора червячной передачи.

Принимаем u чп = 50. Взаимосвязь между частотами вращения вала электродвигателя n дв и выходного вала n з определяется зависимостью:

n дв = n з u общ, (2.6)

тогда желаемая частота вращения вала электродвигателя составит:

n дв = 38,250 = 1910 об/мин.

Согласно имеющейся номенклатуре двигателей наиболее близким к желаемой частоте вращения является двигатель с синхронной частотой вращения, равной 1500 об/мин. С учетом вышеизложенного, окончательно принимаем двигатель марки: 90L4/1395. серии АИР, который обладает следующими характеристиками:

Р дв = 2,2 кВт;

n дв = 1500 об/мин.

Кинематические расчеты

Общее передаточное число:

u общ = n дв / = 1500/38,2=39,3.

Определим все кинематические характеристики проектируемого привода, которые понадобятся в дальнейшем для детальной проработки передачи. Определение частоты и скоростей вращения. Частоты вращения всех валов легко рассчитать, начиная, от выбранной частоты вращения вала электродвигателя с учетом того, что частота вращения каждого последующего вала определяется через частоту вращения предыдущего по формуле (2.7) с учетом передаточного числа:

где n (i+1) - частота вращения i+1 вала, об/мин;

u i -(i+1) - передаточное отношении между i и i+1 валами.

Моменты на валах редуктора:

Т 1 =9,5510 3 (Р/n э)= 9,5510 3 (2,2/1500)=14,0 Нм

Т 2 =Т 1 u=14,039,3=550 Нм.

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра конструирования и стандартизации в машиностроении

Теория машин и механизмов

Методические указания и задания к разделу:

«Определение передаточного отношения в многоступенчатых зубчатых передачах»

Иркутск 2007

Теория машин и механизмов. Методические указания и задания к разделу: «Определение передаточного отношения в многоступенчатых зубчатых передачах». Шматкова А.В. – Иркутск: Изд-во ИрГТУ. – 2007. –20 с.

Настоящее методическое указание предназначается для студентов, изучающих курс «Теории машин и механизмов».

Рецензент:

Подписано в печать 20.01.07 Формат 60х84 1/16

Бумага типографская. Печать офсетная, усл. печ.л.1,25. Уч-изд. л. 1,35

Тираж 200 экз. С-20.

Иркутский государственный технический университет

664074, Иркутск, ул. Лермонтова,83

Предисловие

Настоящее методическое указание предназначается для студентов изучающих курс «Теории машин и механизмов».

При изучении этого курса студенты должны усвоить основные методы расчета и анализа различных схем механизмов.

В данном методическом указании приводятся задания и рассматриваются некоторые вопросы решения задач по определению передаточного отношения в многоступенчатых зубчатых передачах.

ЗАДАНИЕ

Определить передаточное отношение механизма и скорость вращения выходного вала. Недостающие числа зубьев колес определить из условия соосности, считая, что все колеса имеют один и тот же модуль и угол зацепления. Расчетные схемы приведены на рисунках 1.1 – 1.32, исходные данные в таблице 1.

ТЕОРИЯ

Передаточным отношением отколеса 1 к колесу 2 называется отношение угловой скорости (или числа оборотов в минуту ) звена 1 к угловой скорости (или ) звена 2:

.

Таким образом:

Передаточному отношению присваивается знак минус при внешнем зацеплении колес, знак плюс при внутреннем. Знак передаточного отношения указывает направление вращения ведомого звена по отношению к ведущему звену.



Передаточное отношение механизма, состоящего из k ступеней определяется по формуле: ,

где n – число внешних зацеплений.

Для планетарных механизмов передаточное отношение определяется по формуле (таблица 2): ,

где – входное звено, – выходное звено (водило), – неподвижное звено.

Если входным звеном в планетарном механизме является – водило, то расчет передаточного отношения следует начинать со следующей формулы: .

№ варианта Схема рис.№ n 1 (n H1) Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 Z 7 Z 8 Z 9 Z 10 Z 11 Z 12 Z 13 Z 14 Z 15
1.1 1000 30 20 25 - 25 50 - 40 15 20 25 45 - - -
1.2 2000 15 30 45 40 20 - 17 34 40 25 22 26 - - -
1.3 1500 - 18 20 47 21 23 31 45 30 30 45 - - - -
1.4 3000 40 30 10 70 20 15 - 30 35 60 12 21 18 30 25
1.5 2500 25 35 - 15 - 40 30 20 10 25 20 10 30 - -
1.6 1000 30 15 22 18 24 22 40 10 20 - 35 15 - - -
1.7 2000 40 15 - 12 24 18 54 30 18 15 - 30 25 17 15
1.8 1500 50 27 32 35 10 14 30 25 17 19 10 40 - 25 30
1.9 3000 17 34 17 30 25 25 30 50 18 17 34 18 - - -
1.10 2500 18 33 22 17 32 60 20 17 - - 17 30 20 18 36
1.11 1000 21 17 17 30 19 - 20 20 - 25 19 17 30 42 34
1.12 2000 18 33 27 70 19 20 - 17 34 - 40 20 40 18 30
1.13 1500 17 34 36 20 18 - 17 17 34 31 17 19 31 - -
1.14 3000 18 36 17 68 34 18 24 - 38 18 40 20 29 - -
1.15 2500 17 27 17 17 34 17 51 78 20 - 68 32 19 22 -
1.16 1000 15 20 17 40 60 22 25 - - 17 21 40 15 30 -
1.17 2000 15 12 19 30 31 - 30 15 25 15 20 15 15 - -
1.18 4000 15 30 15 - 70 50 14 28 14 25 30 17 33 17 -
1.19 1500 20 30 27 17 - 34 17 17 - 22 18 24 32 34 -
1.20 3000 40 20 25 30 32 22 17 - 17 19 24 - 17 - 34
1.21 1000 60 20 18 24 16 - 17 18 31 19 18 30 - - -
1.22 2500 18 20 40 20 - 80 30 25 30 29 20 22 24 25 30
1.23 4000 80 18 - 70 40 17 20 40 19 37 20 30 40 - -
1.24 2000 20 18 17 29 17 19 30 25 40 20 35 18 18 40 -
1.25 3000 30 25 30 20 40 17 - 20 17 17 - 19 51 17 -
1.26 1000 18 19 33 28 17 51 30 25 17 34 17 34 30 18 -
1.27 2000 20 18 34 17 21 - 22 24 40 18 - 24 22 18 -
1.28 1000 70 22 20 - 30 25 - 35 25 20 - 30 25 40 -
1.29 4000 36 18 24 - 17 34 28 22 26 19 17 26 17 19 18
1.30 2500 80 40 - 60 30 18 - 28 19 32 24 26 40 - 20
1.31 1000 17 29 31 17 30 27 30 20 20 - 40 30 17 34 -
1.32 2000 30 28 25 18 33 40 20 18 18 - 30 17 19 18 -

Таблица 1






Рис.1.12.




Рис.1.17.
Рис.1.18.


Рис.1.19.














ПОРЯДОК ВЫПОЛНЕНИЯ

1. Из условия соосности определить недостающие числа зубьев колес.

2. Разбить механизм на отдельные ступени.

3. Определить передаточное отношение каждой ступени.

4. Определить передаточное отношение механизма в целом как произведение передаточных отношений отдельных ступеней.

Редуктор червячный — один из классов механических редукторов. Редукторы классифицируются по типу механической передачи . Винт, который лежит в основе червячной передачи, внешне похож на червяка, отсюда и название.

Мотор-редуктор - это агрегат, состоящий из редуктора и электродвигателя, которые состоят в одном блоке. Мотор-редуктор червячный создан для того, чтобы работать в качестве электромеханического двигателя в различных машинах общего назначения. Примечательно то, что данный вид оборудования отлично работает как при постоянных, так и при переменных нагрузках.

В червячном редукторе увеличение крутящего момента и уменьшение угловой скорости выходного вала происходит за счет преобразования энергии, заключенной в высокой угловой скорости и низком крутящем моменте на входном валу.

Ошибки при расчете и выборе редуктора могут привести к преждевременному выходу его из строя и, как следствие, в лучшем случае к финансовым потерям.

Поэтому работу по расчету и выбору редуктора необходимо доверять опытным специалистам-конструкторам, которые учтут все факторы от расположения редуктора в пространстве и условий работы до температуры нагрева его в процессе эксплуатации. Подтвердив это соответствующими расчетами, специалист обеспечит подбор оптимального редуктора под Ваш конкретный привод.

Практика показывает, что правильно подобранный редуктор обеспечивает срок службы не менее 7 лет — для червячных и 10-15 лет для цилиндрических редукторов.

Выбор любого редуктора осуществляется в три этапа:

1. Выбор типа редуктора

2. Выбор габарита (типоразмера) редуктора и его характеристик.

3. Проверочные расчеты

1. Выбор типа редуктора

1.1 Исходные данные:

Кинематическая схема привода с указанием всех механизмов подсоединяемых к редуктору, их пространственного расположения относительно друг друга с указанием мест крепления и способов монтажа редуктора.

1.2 Определение расположения осей валов редуктора в пространстве.

Цилиндрические редукторы:

Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной горизонтальной плоскости - горизонтальный цилиндрический редуктор.

Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной вертикальной плоскости - вертикальный цилиндрический редуктор.

Ось входного и выходного вала редуктора может находиться в любом пространственном положении при этом эти оси лежат на одной прямой (совпадают) - соосный цилиндрический или планетарный редуктор.

Коническо-цилиндрические редукторы:

Ось входного и выходного вала редуктора перпендикулярны друг другу и лежат только в одной горизонтальной плоскости.

Червячные редукторы:

Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости - одноступенчатый червячный редуктор.

Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они параллельны друг другу и не лежат в одной плоскости, либо они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости - двухступенчатый редуктор.

1.3 Определение способа крепления, монтажного положения и варианта сборки редуктора.

Способ крепления редуктора и монтажное положение (крепление на фундамент или на ведомый вал приводного механизма) определяют по приведенным в каталоге техническим характеристикам для каждого редуктора индивидуально.

Вариант сборки определяют по приведенным в каталоге схемам. Схемы «Вариантов сборки» приведены в разделе «Обозначение редукторов».

1.4 Дополнительно при выборе типа редуктора могут учитываться следующие факторы

1) Уровень шума

  • наиболее низкий - у червячных редукторов
  • наиболее высокий - у цилиндрических и конических редукторов

2) Коэффициент полезного действия

  • наиболее высокий - у планетарных и одноступенчатых цилиндрических редукторах
  • наиболее низкий - у червячных, особенно двухступенчатых

Червячные редукторы предпочтительно использовать в повторно-кратковременных режимах эксплуатации

3) Материалоемкость для одних и тех же значений крутящего момента на тихоходном валу

  • наиболее низкая - у планетарных одноступенчатых

4) Габариты при одинаковых передаточных числах и крутящих моментах:

  • наибольшие осевые - у соосных и планетарных
  • наибольшие в направлении перпендикулярном осям - у цилиндрических
  • наименьшие радиальные - к планетарных.

5) Относительная стоимость руб/(Нм) для одинаковых межосевых расстояний:

  • наиболее высокая - у конических
  • наиболее низкая - у планетарных

2. Выбор габарита (типоразмера) редуктора и его характеристик

2.1. Исходные данные

Кинематическая схема привода, содержащая следующие данные:

  • вид приводной машины (двигателя);
  • требуемый крутящий момент на выходном валу Т треб, Нхм, либо мощность двигательной установки Р треб, кВт;
  • частота вращения входного вала редуктора n вх, об/мин;
  • частота вращения выходного вала редуктора n вых, об/мин;
  • характер нагрузки (равномерная или неравномерная, реверсивная или нереверсивная, наличие и величина перегрузок, наличие толчков, ударов, вибраций);
  • требуемая длительность эксплуатации редуктора в часах;
  • средняя ежесуточная работа в часах;
  • количество включений в час;
  • продолжительность включений с нагрузкой, ПВ %;
  • условия окружающей среды (температура, условия отвода тепла);
  • продолжительность включений под нагрузкой;
  • радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала F вых и входного вала F вх;

2.2. При выборе габарита редуктора производиться расчет следующих параметров:

1) Передаточное число

U= n вх /n вых (1)

Наиболее экономичной является эксплуатация редуктора при частоте вращения на входе менее 1500 об/мин, а с целью более длительной безотказной работы редуктора рекомендуется применять частоту вращения входного вала менее 900 об/мин.

Передаточное число округляют в нужную сторону до ближайшего числа согласно таблицы 1.

По таблице отбираются типы редукторов удовлетворяющих заданному передаточному числу.

2) Расчетный крутящий момент на выходном валу редуктора

Т расч =Т треб х К реж, (2)

Т треб - требуемый крутящий момент на выходном валу, Нхм (исходные данные, либо формула 3)

К реж - коэффициент режима работы

При известной мощности двигательной установки:

Т треб = (Р треб х U х 9550 х КПД)/ n вх, (3)

Р треб - мощность двигательной установки, кВт

n вх - частота вращения входного вала редуктора (при условии что вал двигательной установки напрямую без дополнительной передачи передает вращение на входной вал редуктора), об/мин

U - передаточное число редуктора, формула 1

КПД - коэффициент полезного действия редуктора

Коэффициент режима работы определяется как произведение коэффициентов:

Для зубчатых редукторов:

К реж =К 1 х К 2 х К 3 х К ПВ х К рев (4)

Для червячных редукторов:

К реж =К 1 х К 2 х К 3 х К ПВ х К рев х К ч (5)

К 1 - коэффициент типа и характеристик двигательной установки, таблица 2

К 2 - коэффициент продолжительности работы таблица 3

К 3 - коэффициент количества пусков таблица 4

К ПВ - коэффициент продолжительности включений таблица 5

К рев - коэффициент реверсивности, при нереверсивной работе К рев =1,0 при реверсивной работе К рев =0,75

К ч - коэффициент, учитывающий расположение червячной пары в пространстве. При расположении червяка под колесом К ч = 1,0, при расположении над колесом К ч = 1,2. При расположении червяка сбоку колеса К ч = 1,1.

3) Расчетная радиальная консольная нагрузка на выходном валу редуктора

F вых.расч = F вых х К реж, (6)

F вых - радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала (исходные данные), Н

К реж - коэффициент режима работы (формула 4,5)

3. Параметры выбираемого редуктора должны удовлетворять следующим условиям:

1) Т ном > Т расч, (7)

Т ном - номинальный крутящий момент на выходном валу редуктора, приводимый в данном каталоге в технических характеристиках для каждого редуктора, Нхм

Т расч - расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм

2) F ном > F вых.расч (8)

F ном - номинальная консольная нагрузка в середине посадочной части концов выходного вала редуктора, приводимая в технических характеристиках для каждого редуктора, Н.

F вых.расч - расчетная радиальная консольная нагрузка на выходном валу редуктора (формула 6), Н.

3) Р вх.расч < Р терм х К т, (9)

Р вх.расч - расчетная мощность электродвигателя (формула 10), кВт

Р терм - термическая мощность, значение которой приводится в технических характеристиках редуктора, кВт

К т - температурный коэффициент, значения которого приведены в таблице 6

Расчетная мощность электродвигателя определяется:

Р вх.расч =(Т вых х n вых)/(9550 х КПД), (10)

Т вых - расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм

n вых - частота вращения выходного вала редуктора, об/мин

КПД - коэффициент полезного действия редуктора,

А) Для цилиндрических редукторов:

  • одноступенчатых - 0,99
  • двухступенчатых - 0,98
  • трехступенчатых - 0,97
  • четырехступенчатых - 0,95

Б) Для конических редукторов:

  • одноступенчатых - 0,98
  • двухступенчатых - 0,97

В) Для коническо-цилиндрических редукторов - как произведение значений конической и цилиндрической частей редуктора.

Г) Для червячных редукторов КПД приводиться в технических характеристиках для каждого редуктора для каждого передаточного числа.

Купить редуктор червячный, узнать стоимость редуктора, правильно подобрать необходимые компоненты и помочь с вопросами, возникающими во время эксплуатации, Вам помогут менеджеры нашей компании.

Таблица 1

Таблица 2

Ведущая машина

Генераторы, элеваторы, центробежные компрессоры, равномерно загружаемые конвейеры, смесители жидких веществ, насосы центробежные, шестеренные, винтовые, стреловые механизмы, воздуходувки, вентиляторы, фильтрующие устройства.

Водоочистные сооружения, неравномерно загружаемые конвейеры, лебедки, тросовые барабаны, ходовые, поворотные, подъемные механизмы подъемных кранов, бетономешалки, печи, трансмиссионные валы, резаки, дробилки, мельницы, оборудование для нефтяной промышленности.

Пробойные прессы, вибрационные устройства, лесопильные машины, грохот, одноцилиндровые компрессоры.

Оборудование для производства резинотехнических изделий и пластмасс, смесительные машины и оборудование для фасонного проката.

Электродвигатель,

паровая турбина

4-х, 6-ти цилиндровые двигатели внутреннего сгорания, гидравлические и пневматические двигатели

1-х, 2-х, 3-х цилиндровые двигатели внутреннего сгорания

Таблица 3

Таблица 4

Таблица 5

Таблица 6

охлаждения

Температура окружающей среды, С о

Продолжительность включения, ПВ %.

Редуктор без

постороннего

охлаждения.

Редуктор со спиралью водяного охлаждения.

1 Крутящий момент на выходном валу редуктора M2 [Нм]
Крутящим моментом на выходном валу редуктора называется вращающий момент, подводимый к выходному валу мотор-редуктора, при установленной номинальной мощности Pn, коэффициенте безопасности S, и расчетном сроке службы 10000 часов, с учетом КПД редуктора.
2 Номинальный крутящий момент редуктора Mn2 [Нм]
Номинальным крутящим моментом редуктора называется максимальный крутящий момент, на безопасную передачу которого рассчитан редуктор, исходя из следующих величин:
. коэффициент безопасности S=1
. срок службы 10000 часов.
Величины Mn2 рассчитываются в соответствии со следующими стандартами:
ISO DP 6336 для шестерен;
ISO 281 для подшипников.

3 Максимальный вращающий момент M2max [Нм]
Максимальным вращающим моментом называется наибольший крутящий момент, выдерживаемый редуктором в условиях статической или неоднородной нагрузки с частыми пусками и остановками (это величина понимается как мгновенная пиковая нагрузка при работе редуктора или пусковой крутящий момент под нагрузкой).
4 Необходимый крутящий момент Mr2 [Нм]
Значение крутящего момента, соответствующее необходимым требованиям потребителя. Данная величина всегда должна быть меньше или равна номинальному значению выходного крутящего момента Mn2 выбранного редуктора.
5 Расчетный крутящий момент M c2 [Нм]
Значение крутящего момента, которым необходимо руководствоваться при выборе редуктора с учетом требуемого крутящего момента Mr2 и эксплуатационного коэффициента fs, вычисляется по формуле:

Значения динамического КПД редукторов указаны в таблице (A2)

Предельная термическая мощность Pt [кВт]

Данная величина равна предельному значению передаваемой редуктором механической мощности в условиях непрерывной работы при температуре окружающей среды 20°C без повреждения узлов и деталей редуктора. При температуре окружающей среды, отличной от 20°C, и прерывистом режиме работы значение Pt корректируется с учетом тепловых коэффициентов ft и коэффициентов скорости, приведенных в таблице (A1). Необходимо обеспечить выполнение следующего условия:

Коэффициент полезного действия (КПД)

1 Динамический КПД [ηd]
Динамический КПД представляет собой отношение мощности, получаемой на выходном валу P2, к мощности, приложенной к входному валу P1.

Передаточное число [ i ]

Характеристика, присущая каждому редуктору, равная отношению скорости вращения на входе n1 к скорости вращения на выходе n2:

i = n1/n2

Скорость вращения

1 Скорость на входе n1 [мин -1]
Скорость вращения, подведенная к входному валу редуктора. В случае прямого подсоединения к электродвигателю данное значение равно выходной скорости электродвигателя; в случае подсоединения через другие элементы привода для получения входной скорости редуктора скорость двигателя следует разделить на передаточное число подводящего привода. В этих случаях рекомендуется подводить к редуктору скорость вращения ниже 1400 об/мин. Не допускается превышение значений входной скорости редукторов, указанных в таблице.

2 Скорость на выходе n2 [мин-1]
Выходная скорость n2 зависит от входной скорости n1 и передаточного числа i; вычисляется по формуле:

Коэффициент безопасности [S]

Значение коэффициента равно отношению номинальной мощности редуктора к реальной мощности электродвигателя, подсоединенного к редуктору:

S= Pn1/ P1

Редуктор

Число ступеней

Виды передач

Взаимное расположение осей входного и выходного валов

Цилиндрический

Одноступенчатый

Одна или несколько цилиндрических передач

Параллельное

Параллельное или соосное

Четырехступенчатый

Параллельное

Конический

Одноступенчатый

Одна коническая передача

Пересекающееся

Коническо-цилиндрический

Одна коническая передача и одна или несколько цилиндрических передач

Пересекающееся или скрещивающееся

Червячный

Одноступенчатый Двухступенчатый

Одна или две червячные передачи

Скрещивающееся

Параллельное

Цилиндрическо-червячный или червячно-цилиндрический

Двухступенчатый, трехступенчатый

Одна или две цилиндрические передачи и одна червячная передача

Скрещивающееся

Планетарный

Одноступенчатый двухступенчатый трехступенчатый

Каждая ступень состоит из двух центральных зубчатых колес и сателитов

Цилиндрическо-планетарный

Двухступенчатый, трехступенчатый, четырехступенчатый

Комбинация из одной или нескольких цилиндрических и планетарных передач

Параллельное или соосное

Коническо-планетарный

Двухступенчатый, трехступенчатый, четырехступенчатый

Комбинация из одной конической и планетарных передач

Пересекающееся

Червячно-планетарный

Двухступенчатый, трехступенчатый, четырехступенчатый

Комбинация из одной червячной и планетарных передач

Скрещивающееся

Волновой

Одноступенчатый

Одна волновая передача

Классификация редукторов в зависимости от расположения осей входного и выходного валов в пространстве.

Редуктор

Расположения осей входного и выходного валов в пространстве

1. С параллельными осями входного и выходного валов 1. Горизонтальное ; оси расположены в горизонтальной плоскости; оси расположены в вертикальной плоскости (с входным валом над или под выходным валом); оси расположены в наклонной плоскости
2. Вертикальное
2. С совпадающими осями входного и выходного валов (соосный) 1. Горизонтальное
2. Вертикальное
3. С пересекающимися осями входного и выходного валов 1. Горизонтальное
4. Со скрещивающимися осями входного и выходного валов 1. Горизонтальное (с входным валом над или под выходным валом)
2. Горизонтальная ось входного вала и вертикальная ось выходного вала
3. Вертикальная ось входного вала и горизонтальная ось выходного вала

Классификация редукторов в зависимости от способа крепления.

Способ крепления

Пример

На приставных лапах или на плите (к потолку или стене):

на уровне плоскости основания корпуса редуктора:

над уровнем плоскости основания корпуса редуктора:

Фланцем со стороны входного вала

Фланцем со стороны выходного вала

Фланцем со стороны входного и выходного валов

Насадкой

Конструктивные исполнения по способу монтажа.

Условные изображения и цифровые обозначения конструктивных исполнений редукторов и мотор-редукторов общемашиностроительного применения: (изделий) по способу монтажа установлены ГОСТ 30164-94.
В зависимости от конструкции редукторы и мотор-редукторы разбиты на следующие группы:

а) соосные;
б) с параллельными осями;
в) с пересекающимися осями;
г) со скрещивающимися осями.

К группе а) отнесены и изделия с параллельными осями, у которых концы входного и выходного валов направлены в противоположенные стороны, а их межосевое расстояние составляет не более 80мм.
К группам б) и в) отнесены также вариаторы и вариаторные приводы. Условные изображения и цифровые обозначения конструктивных исполнений по способу монтажа характеризуют конструктивные исполнения корпусов, а также расположение в пространстве поверхностей крепления валов или осей валов.

Первая - конструктивное исполнение корпуса (1 - на лапах, 2 - с фланцем);
Вторая - расположение поверхности крепления (1 - пол, 2 - потолок, 3 - стена);
Третья - расположение конца выходного вала (1 - горизонтальный влево, 2 - горизонтальный вправо, 3 - вертикальный вниз, 4 - вертикальный верх).

Условное обозначение изделий группы а) состоит из трех цифр:
первая - конструктивное исполнение корпуса (1 - на лапах; 2 - с фланцем); вторая - расположение поверхности крепления (1 - пол; 2 - потолок; 3 - стена); третья - расположение конца выходного вала (1 - горизонтальный влево; 2 - горизонтальный вправо; 3 - вертикальный вниз; 4 - вертикальный вверх).

Условное обозначение изделий групп б) и в) состоит из четырех цифр:
первая - конструктивное исполнение корпуса (1 - на лапах; 2 - с фланцем; 3 - навесное; 4 - насадное); вторая - взаимное расположение поверхности крепления и осей валов для группы б): 1 - параллельно осям валов; 2 - перпендикулярно осям валов; для группы в): 1 - параллельно осям валов; 2 - перпендикулярно оси выходного вала; 3 - перпендикулярно оси входного вала); третья - расположение поверхности крепления в пространстве (1 - пол; 2 - потолок; 3 - стена левая, передняя, задняя; 4 - стена правая, передняя, задняя);

четвертая - расположение валов в пространстве для группы б): 0 - валы горизонтальные в горизонтальной плоскости; 1 - валы горизонтальные в вертикальной плоскости; 2 - валы вертикальные; для группы в): 0 - валы горизонтальные; 1 - выходной вал вертикальный; 2 - входной вал вертикальный).
Условное обозначение изделий группы г) состоит из четырех цифр:
первая - конструктивное исполнение корпуса (1 - на лапах; 2 - с фланцем; 3 - навесное; 4 - насадное);
вторая - взаимное расположение поверхности крепления и осей валов (1 - параллельно осям валов, со стороны червяка; 2 - параллельно осям валов, со стороны колеса; 3, 4 - перпендикулярно оси колеса; 5, 6 - перпендикулярно оси червяка);
третья - расположение валов в пространстве (1 - валы горизонтальные; 2 - выходной вал вертикальный: 3 - входной вал вертикальный);
четвертая - взаимное расположение червячной пары в пространстве (0 - червяк под колесом; 1 - червяк над колесом: 2 - червяк справа от колеса; 3 - червяк слева от колеса).
Изделия навесного исполнения устанавливают полым выходным валом, а корпус фиксируют в одной точке от проворота реактивным моментом. Изделия насадного исполнения устанавливают полым выходным валом, а корпус крепят неподвижно в нескольких точках.
В мотор-редукторах на изображении конструктивного исполнения по способу монтажа должно быть дополнительное упрощенное изображение контура двигателя по ГОСТ 20373.
Примеры условных обозначений и изображений:
121 - соосный редуктор, конструктивное исполнение корпуса на лапах, крепление к потолку, валы горизонтальные, выходной вал слева (рис. 1, а);
2231 - редуктор с параллельными осями, исполнение корпуса с фланцем, поверхность крепления перпендикулярна осям валов, крепление к левой стене, валы горизонтальные в вертикальной плоскости (рис. 1, б);
3120 - редуктор с пересекающимися осями, исполнение корпуса навесное, поверхность крепления параллельна осям валов, крепление к потолку, валы горизонтальные (рис. 1, в);
4323 - редуктор со скрещивающимися осями, исполнение корпуса насадное, поверхность крепления перпендикулярна оси колеса, выходной вал вертикальный, червяк слева от колеса (рис. 1, г). Символом LLLL обозначена точка фиксации изделия от проворота реактивным моментом и крепление полого выходного вала на валу рабочей машины.

Министерство образования и науки Российской Федерации.

Федеральное агентство по образованию.

Государственное образовательное учреждение высшего профессионального образования.

Самарский государственный технический университет.

Кафедра: «Прикладная механика»

Курсовой проект по механике

Студент 2 – ХТ – 2

Руководитель: к. т. н., доцент


Техническое задание №65.

Коническая передача.

Частота вращения вала электродвигателя:

.

Вращающий момент на выходном валу редуктора:

.

Частота вращения выходного вала:

.

Cрок службы редуктора в годах:

.

Коэффициент загрузки редуктора в течение года:

.

Коэффициент загрузки редуктора в течение суток:

.

1. Введение_________________________________________________________4

2. Кинематический и силовой расчёт привода__________________________4

2.1 Определение частот вращения валов редуктора______________________4

2.2. Расчёт чисел зубьев колёс________________________________________4

2.3. Определение фактического передаточного отношения_______________5

2.4. Определение КПД редуктора_____________________________________5

2.5. Определение номинальных нагрузочных моментов на каждом валу, схема механизма___________________________________________________5

2.6. Расчёт потребной мощности и выбор электродвигателя, его размеры___5

3. Выбор материалов и расчёт допускаемых напряжений_________________7

3.1. Определение твёрдости материалов, выбор материала для зубчатого колеса____________________________________________________________7

3.2. Расчет допускаемых напряжений _________________________________7

3.3. Допускаемые напряжения на контактную выносливость______________7

3.4. Допускаемые напряжения на изгибную выносливость________________8

4. Проектный и проверочный расчёт передачи__________________________8

4.1. Вычисление предварительного делительного диаметра шестерни______8

4.2. Вычисление предварительного модуля передачи и уточнение его по ГОСТу___________________________________________________________8

4.3. Расчёт геометрических параметров передачи_______________________8

4.4. Проверочный расчёт передачи___________________________________9

4.5. Усилия в зацеплении___________________________________________9

5. Проектный расчёт вала и выбор подшипников ______________________12

6. Эскизная компоновка и расчёт элементов конструкции_______________12

6.1. Расчёт зубчатого колеса________________________________________12

6.2. Расчёт элементов корпуса______________________________________13

6.3. Расчёт мазеудерживающих колец_______________________________13

6.4. Расчёт крышки подшипников__________________________________13

6.5. Выполнение компоновочного чертежа__________________________13

7. Подбор и проверочный расчёт шпоночных соединений _______________14

8. Проверочный расчёт вала на усталостную выносливость______________15

9. Проверочный расчёт подшипников выходного вала на долговечность___18

10. Подбор и расчет соединительной муфты___________________________19

11. Смазывание редуктора__________________________________________19

12. Сборка и регулировка основных узлов редуктора___________________20

13. Список используемой литературы________________________________22

14. Приложения__________________________________________________23


Введение.

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины.

Назначение редуктора – понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи – зубчатые колеса, валы, подшипники и т.д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников или устройства для охлаждения.

Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-червячные); числу ступеней (одноступенчатые, двухступенчатые и т.д.); типу зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т.д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т.д.).

Конические редукторы применяют для передачи движения между валами, оси которых пересекаются обычно под углом 90. Передачи с углами, отличными от 90 , встречаются редко.

Наиболее распространённый тип конического редуктора - редуктор с вертикально расположенным тихоходным валом. Возможно исполнение редуктора с вертикально расположенным быстроходным валом; в этом случае привод осуществляется от фланцевого электродвигателя

Передаточное число u одноступенчатых конических редукторов с прямозубыми колёсами, как правило, не выше 3; в редких случаях u = 4.При косых или криволинейных зубьях u = 5 (в виде исключения u = 6.3).

У редукторов с коническими прямозубыми колёсами допускаемая окружная скорость (по делительной окружности среднего диаметра) v ≤ 5 м/с. При более высоких скоростях рекомендуют применять конические колёса с круговыми зубьями, обеспечивающими более плавное зацепление и большую несущую способность.


2 Кинематический и силовой расчет привода.

2.1 Определение частот вращения валов редуктора:

.

Частота вращения первого (входного) вала:

.

Частота вращения второго (выходного) вала:

.

2.2 Расчёт чисел зубьев передач.

Расчётное число зубьев шестерни

определяют в зависимости от величины передаточного отношения передачи:

Значение

округляют до целого числа по правилам математики: .

Расчётное число зубьев колеса

, необходимое для реализации передаточного числа , определяют по зависимости: .

Значение

округляют до целого числа : .

2.3 Определение фактического передаточного отношения:

.

2.4 Определение КПД редуктора.

Для конического редуктора

.

Вращающий (нагрузочный) момент на выходном валу редуктора:

.

На входном валу:

.

2.5 Определение номинальных нагрузочных моментов на каждом валу, схема механизма.

Мощность на выходном валу редуктора, кВт:

кВт , где: - вращающий момент выходного вала, - частота вращения выходного вала.

Расчетная мощность электродвигателя.

Статьи по теме